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Overview
1 What is a Dynamical System?

First-order ODEs
Phase Space Analysis

Example: The Pendulum
Fixed Points
Stability

The Jacobian Matrix
Bifurcations

Hopf Bifurcation
Limit Cycle and Stability

2 Dynamics in Neuroscience
Excitability of Neurons
Action Potential
The Hodgkin-Huxley Model
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Mechanism behind the Action Potential
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Fixed Points of ML
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What is a Dynamical System?

We can start with an informal definition:

Definition (Dynamical System)
A dynamical system is a system whose state is uniquely specified by a set
of variables and whose behavior is described by predefined rules.

Dynamical systems can be seen everywhere, from a pendulum, population
growth, motions of planets, to biochemical systems in the human body.
The motivation behind the theory is trying to understand how systems will
behave as t −→ ∞ or t −→ −∞.
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First-order ODEs

Dynamical systems can be either in discrete time steps or continuous
time line. They have the respective mathematical formulations:

Definition (First-order Dynamical System)
xt = F(xt−1, t) for discrete dynamical system and dx

dt = F(x, t) for
continuous systems where x(t) ∈ Rd and F : Rd −→ Rd

From the definitions:
F is a function/mapping determining rules by which the system
changes states over time, usually an iterative map for discrete steps
and a differential equation for the continuous case
x or xt is the state variable of the system at time t, can be scalar or
vector These are only the first-order versions, higher order systems
include higher order terms (d2x

dt2 ,
d3x
dt3 , ...).
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Phase Space Analysis

We can study the behavior of dynamical systems with phase spaces.

Definition (Phase Space and Phase Plane)
A phase space of a dynamical system is a theoretical space where every
state of the system is mapped to a unique spatial location.
A phase plane is the space of a two-dimensional system.

These graphs visually represent how a dynamical system is changing with
respect to one variable, which might provide more insights into the
dynamics than equations.
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Example: The Pendulum

We can consider the classic pendulum problem and use Newton’s equation
to get a system of ODEs:

θ̇(t) = v(t)

v̇(t) = −sin(θ)

The phase plane plots allow us to see how the pendulum will end up
despite all the possible starting angles and velocities.

Figure: Phase plane between angle and velocity of pendulum: (left) ideal case, no
friction, (right) pendulum with friction
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Fixed Points

When analyzing dynamical systems, one of the first things to consider are
the fixed points. These are points where the system can stay the same
over time.

Definition (Fixed Points (also Equilibrium Points or Steady States))
If x0 ∈ Rd is a zero of F, F(x0) = 0, then x0 is a fixed point and has
constant solution x(t) = x0.

For the pendulum example, the rest position of θ = 0 is a fixed point.
These fixed points are important theoretically because they serve as
constant references that we can use to understand the evolving space
space. With this knowledge, we can manipulate the system to be in
certain desirable states from the fixed points.
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Stability

Fixed points can be stable or unstable, depending on whether
perturbations around these points remain bounded or grow unbounded.

Figure: Example of a stable and unstable fixed point
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The Jacobian Matrix

For systems with dimensions higher than one, we rely on the Jacobian
matrix to define properties such as stability and bifurcation:

Definition (Jacobian Matrix)
For the mapping F : Rd −→ Rd with x ∈ Rd, the Jacobian matrix is defined
as

J =



∂f1
∂x1

. . .
∂f1
∂xd

... . . . ...

∂fd
∂x1

. . .
∂fd
∂xd


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Stability Defined

Definition (Stable Fixed Point)
With continuously differentiable F : Rd −→ Rd with fixed point x0 and
eigenvalues λi of Jacobian matrix Jx(F).
If ∥λi∥ < 1 for all i then x0 is a stable fixed point.
If ∥λi∥ > 1 for at least one i then x0 is an unstable fixed point.
If ∥λi∥ = 1 for some i then the Jacobian test is inconclusive.
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Bifurcations

Bifurcation means splitting in two. When considering long-term behavior
of a system, we might observe changes in parameter that cause slight
changes in the system, and there can be slight parameter changes that
cause drastic, qualitative changes in the behavior.
That slight change is characterized by critical threshold, or the parameter
value at which bifurcation occurs.

Definition (Bifurcation)
A bifurcation is a qualitative, topological change of a system’s phase space
that occurs when some parameters are slightly varied across their critical
thresholds.

Important applications of bifurcations in dynamical systems are in studying
excitation of neurons, transitions of ecosystems, or information in
computer memory.
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Bifurcations

There are two categories of bifurcations: local and global. We focus on
local bifurcations, which can be detected with local information around the
equilibrium point. This can be defined mathematically:

Definition (Local Bifurcation)
Local bifurcations occur when eigenvalues λi of the Jacobian matrix at an
equilibrium point satisfy:

∥λi∥ = 1 for some i, and ∥λi∥ < 1 otherwise (for discrete case)
Re(λi) = 0 for some i, and Re(λi) =< otherwise (for continuous case)
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Hopf Bifurcation

One particular type of bifurcation is the Hopf bifurcation. It is a local
bifurcation where a stability switch in a system leads to a limit-cycle
appearing around a fixed point.

Definition (Hopf Bifurcation)
Let J0 be the Jacobian of a continuous dynamical system evaluated at
fixed point x0. Suppose all eigenvalues of J0 have negative real parts
except for one conjugate nonzero imaginary pair ±iβ.
A Hopf bifurcation occurs when these two imaginary eigenvalues cross the
imaginary axis because of a parameter change in the system.
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Limit Cycle and Stability

We also give an informal definition of limit cycles:

Definition (Limit Cycle)
A limit cycle is a closed trajectory in the phase plane such that other
trajectories spiral toward it (either from the inside or outside) as t −→ ∞.

Figure: A stable and unstable limit cycle
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Neuroscience and Dynamics

One important application of the study of dynamical systems is in context
of neuroscience, since modeling of the brain provides valuable insights in
how complex processes such as thought, memory, vision, or motor control
are derived from individual or populations of working neurons. In order to
control all the processes that are needed to regulate a living animal, the
brain is organized anatomically into regions.
Neurons are specialized cells of the nervous system that receive sensory
input from the environment, transmit and relay information to other
intermediates, and output motor commands to muscles.
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Excitability of Neurons

Despite being in different locations and having vastly different functions,
neurons still communicate with each other through the propagation of
action potentials.
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The Action Potential

The action potential, a transient electrical signal, is
transmitted from one neuron’s axon hillock to
another neuron’s dendrites. Action potentials occur
when the membrane potential on the cell fluctuates
(”depolarizes”) rapidly, causing adjacent areas to
depolarize and propagate further. The electrical
activity comes from movement of ions such as
K+,Na+,Cl−, across the membrane.
These ions are able to move due to ion channels
(e.g. potassium channel, sodium channel) that are
embedded in the membrane and will selectively pass
current. These channels are voltage-gated, meaning
they are sensitive to the membrane potential and
will predictably open or close upon specific voltages.

Figure: Plot showing the
phases of an action
potential
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The Hodgkin-Huxley Model
Hodgkin and Huxley were neuroscientists who used voltage-clamp
experiments, allowing membrane potential to be controlled, formulated a
quantitative description of how action potentials could be generated. The
model is a system of 4 equations, relating variables like voltage (V) to the
individual conductances of each ion and leak currents (gNa/gK/gL).

cM
dV
dt = −gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL)

dn
dt = ϕ[αn(V)(1 − n)− βn(V)n]

dm
dt = ϕ[αm(V)(1 − m)− βm(V)m]

dh
dt = ϕ[αh(V)(1 − h)− βh(V)h]

Note: ENa/EK/EL = equilibrium potentials, α/β = rate constants for
channel opening/closing, gating variables n,m, h ∈ (0, 1),
and ϕ = temperature factor
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HH Solution

Figure: The top figure shows the solution to the HH equations, the shape of an
action potential. The bottom shows the conductance of Na and K channels
during the course of the action potential. This reveals the mechanics behind the
action potential.
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Mechanism behind the Action Potential

Figure: Figure illustrating mechanism behind the action potential and why it has
that shape. The upstroke is due to Na channels activating, followed by their quick
inactivation. The down-stroke is largely up to K channels for hyperpolarization.
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The Morris-Lecar Model

Another model for the production of action potentials, the Morris-Lecar
model considers three channels: potassium channel, calcium channel, and
a leak channel. This model is popular since it is regarded as a
two-dimensional system (as opposed to the 4-dimensional HH model). The
assumption behind using this two-dimensional model is that true
higher-order systems can be projected onto a two-dimensional phase plane
without altering any topological properties of the phase space.

Cm
dV
dt = Iapp − gl(V − EL)− gkn(V − EK)− gCam∞(V)(V − ECa)

dn
dt = ϕ(n∞(V)− n)/τn(V)
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ML Solution

Figure: (V,n)-plane: (left) small perturbation from rest decays to resting state
(V2(t)) while larger perturbation generates action potential (V3(t));(right)
periodic solution from Hopf bifurcation
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Fixed Points of ML

Figure: Filled-in dots are stable fixed points, representing resting potential Vr and
peak of action potential Ve. Open dot is unstable fixed point, signifying the
threshold voltage needed for an action potential Vt
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